If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-109=0
a = 1; b = 5; c = -109;
Δ = b2-4ac
Δ = 52-4·1·(-109)
Δ = 461
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{461}}{2*1}=\frac{-5-\sqrt{461}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{461}}{2*1}=\frac{-5+\sqrt{461}}{2} $
| 7-4(3x-2)=117 | | 18-(5x+3)=-15 | | 4.9m+(-3.2m)–13=-2.63 | | 2-8n=62 | | 5x+x=17-2x | | 91.50=2*3v | | (7(x+25))+2x=1470 | | 3/5b=-27 | | 91.50=2c*3 | | 2(3x-4)+7=23 | | c=72c+(9-5) | | 3(y-7)+2y=44 | | 5x+1+18x+11=62 | | -13=x-34 | | 2(1/2)x-x=3(1/3x) | | 4x+35=9x-5 | | 91.50=2x3 | | 2(1/2)x-x=3(1/3)x | | -18=-6k+17 | | 3/29x-2)-5=19 | | 7(x+25)+2x=1470 | | 6x+6=40 | | 7d+7=22+d | | -13=-2(y-4)+3y | | 0=-6a^2-25a-25 | | 2(x+5)8x+15=90 | | 7y+4(2y+9)=-24 | | 5v+v=$72 | | 0=-4.9x^2-25 | | 2(x+5)+8x+15=90 | | 1+3£=4c | | 5+2x-6=3+4(x+2) |